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Abstract. The covariant regularization of the contributions of fundamental particles to the vacuum energy
density is implemented in the Pauli–Villars, dimensional regularization, and Feynman regulator frameworks.
Rules of correspondence between dimensional regularization and cutoff calculations are discussed. Invoking
the scale invariance of free field theories in the massless limit, as well as consistency with the rules of
correspondence, it is argued that quartic divergences are absent in the case of free fields, while it is shown
that they arise when interactions are present.

1 Introduction

It has been pointed out by several authors that one of
the most glaring contradictions in physics is the enormous
mismatch between the observed value of the cosmological
constant and estimates of the contributions of fundamental
particles to the vacuum energy density [1]. Specifically, the
observed vacuum energy density in the universe is approxi-
mately 0.73ρc, where ρc = 3H2/8πGN ≈ 4×10−47 GeV4 is
the critical density, while estimates of the contributions of
fundamental particles range roughly from (TeV)4 in bro-
ken supersymmetry scenarios to (1019 GeV)4 = 1076 GeV4

if the cutoff is chosen to coincide with the Planck scale.
Thus, there is a mismatch of roughly 59 to 123 orders of
magnitude!

The aim of this paper is to discuss the nature of these
contributions by means of elementary arguments.

In the case of free particles, it is easy to see that a
covariant regularization is needed, which we implement in
the Pauli–Villars (PV) [2, 3], dimensional regularization
(DR) [4], and Feynman regulator (FR) [3] frameworks.

We recall that the vacuum energy density is given by

ρ = 〈0|T00|0〉 , (1)

where Tµν is the energy-momentum tensor.
Defining tµν ≡ 〈0|Tµν |0〉 and assuming the validity of

Lorentz invariance, we have

tµν = ρ gµν , (2)

or, equivalently,
tµν =

gµν
4

tλλ , (3)
a e-mail: go226@nyu.edu
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where we employ the metric

g00 = −g11 = −g22 = −g33 = 1.

We first consider the case of a free scalar field. Expand-
ing the fields in plane waves with coefficients expressed in
terms of creation and annihilation operators, and using
their commutation relations, one readily finds the familiar
expression

ρ = t00 =
1
2

∫
d3k

(2π)3
ω2
k

ωk
, (4)

where ωk =
[
(k)2 +m2

]1/2, as well as

p = tii =
1
2

∫
d3k

(2π)3
(ki)2

ωk
. (5)

In (5), i = 1, 2, 3 and there is no summation over i.
Both (4) and (5) are highly divergent and therefore

mathematically undefined. Moreover, as recently empha-
sized by Akhmedov [5], the usual procedure of introduc-
ing a three-dimensional cutoff leads to an obvious contra-
diction: since the integrands in (4) and (5) are positive,
one would reach the conclusion that t00 and tii have the
same sign, in contradiction with (2)! This reflects the fact
that a three-dimensional cutoff breaks Lorentz invariance.
Clearly, covariant regularization procedures are required!

This is an important issue, since expressions that are
not properly regularized are often deceptive. A classical
example is provided by the calculation of vacuum polar-
ization in QED, in which a quadratically divergent contri-
bution turns out to be zero upon the imposition of elec-
tromagnetic current conservation [6]. Similarly, the same
requirement transforms linearly divergent contributions to
the triangle diagrams into convergent ones [7]. In fact, it
is important that the regularization procedure respects
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the symmetries and partial symmetries of the underly-
ing theory.

The plan of this paper is the following. In Sect. 2, we
discuss rules of correspondence between the position of the
poles in DR and cutoff calculations. In Sect. 3 we imple-
ment the covariant regularization of tµν in the PV, DR,
and FR frameworks, starting from (2), (4) and (5). In
Sect. 4 we consider the evaluation of tλλ on the basis of
well-known expressions for the vacuum expectation value
of products of free field operators, as well as Feynman dia-
grams. Throughout the paper the role played by the scale
invariance of free field theories in the massless limit is em-
phasized. Section 5 illustrates the important effects arising
from interactions by means of two specific examples. Sec-
tion 6 presents the conclusions. Appendix A proves a gen-
eral theorem concerning the signs of the vacuum energy
density contributions of a free scalar field when it is regu-
larized in the PV framework with the minimum number of
regulator fields, while Appendix B illustrates the rules of
correspondence in the evaluation of the one-loop effective
potential. Section 4 contains a phenomenological update
of the Veltman–Nambu sum rule for mH [8, 9] and of an
alternative relation discussed in [10].

2 Rules of correspondence

Since DR does not involve cutoffs explicitly, this approach
is seldom employed in discussions concerning the cosmo-
logical constant and hierarchy problems. However, as it
will be shown, it does give valuable information about the
nature of the ultraviolet singularities. Furthermore, it has
other important virtues for the problems under consider-
ation: it respects the scale invariance of free field theories
in the massless limit, does not involve unphysical regula-
tor fields, and it is relatively easy to use in the two-loop
calculation carried out in Sect. 5.

In order to discuss the position of the poles correspond-
ing to specific ultraviolet divergences in multi-loop calcu-
lations, it is convenient to multiply each n-dimensional
integration

∫
dnk by µ4−n, where µ is the ’t Hooft scale.

This ensures that the combination of the prefactor and the
integration has the canonical dimension 4.

Let us first consider quadratic ultraviolet divergences.
In cutoff calculations, aside from physical masses and mo-
menta, such contributions are proportional to Λ2, where
Λ is the ultraviolet cutoff. In DR they must be propor-
tional to suitable poles multiplied by µ2, since this is the
only available mass independent of the physical masses
and momenta. If L is the number of loops, we have the
condition (µ4−n)L = µ2, or n = 4 − 2/L. This means that
quadratic divergences exhibit poles at n = 2, 3, 10/3, . . .
for L = 1, 2, 3, . . . loop integrals. The same conclusion has
been stated long ago by Veltman [8].

It should be pointed out that this is a useful criterion
for scalar integrals of the form

Il,m = i
∫

dnk
(2π)n

(k2)l

(k2 −M2)m
, (6)

where l, m are integers ≥ 0 and for brevity we have not in-
cluded the iε instruction. When l is a negative integer, there
may appear poles at n = 2 which correspond to infrared,
rather than ultraviolet singularities. A useful example is
provided by the relation [10]:∫

dnk
k2 =

∫
dnk

k2 −M2 −M2
∫

dnk
k2(k2 −M2)

. (7)

As is well known, the LHS is zero in DR. The first integral
in the RHS is quadratically divergent in four dimensions
and consequently exhibits an ultraviolet pole at n = 2,
while the second one involves a pole at n = 2 arising from
the Feynman parameter integration. This last singularity
is related to the fact that the second integral contains a
logarithmic infrared divergence at n = 2. Thus, in (7)
we witness a cancellation between ultraviolet and infrared
poles. As pointed out in [10], in discussing ultraviolet sin-
gularities one should include in that case the contribution
from the first integral.

The above discussion can be extended to quartic diver-
gences. Since, by an analogous argument, these must be
proportional to µ4, we have the relation (µ4−n)L = µ4, or
n = 4 − 4/L. Thus, quartic divergences exhibit poles at
n = 0, 2, 8/3, . . . for L = 1, 2, 3, . . . loop scalar integrals.
Of course, as we will see in a specific example, a quartic
divergence may also arise from the product of two one-loop
quadratically divergent integrals, each of which has a pole
at n = 2.

In Sect. 3, we show how these rules permit to establish
a correspondence between DR and cutoffs calculations in
one-loop amplitudes.

3 Regularization of tµν

In order to implement a covariant regularization of tµν ,
we first search for a four-dimensional representation of (4)
and (5).

Inserting the well-known identity

1
2ωk

=
∫ ∞

−∞
dk0 δ(k2 −m2) θ(k0) , (8)

k2 ≡ k2
0 − (k)2, in (4) and (5), we see that ρ and p are the

zero–zero and i–i components of the formal tensor

tµν =
∫

d4k

(2π)3
kµkν δ(k2 −m2) θ(k0) . (9)

As we will discuss in detail later on, (9) can be regularized
in the PV and DR frameworks. Since tµν is proportional
to gµν , in analogy with (2) and (3) it follows that

tµν =
gµν
4

m2
∫

d4k

(2π)3
δ(k2 −m2) θ(k0) , (10)

where we have employed k2 δ(k2 −m2) = m2 δ(k2 −m2).
Using (8) in reverse and the identity

1
ωk

=
1
π

∫ ∞

−∞
dk0

i
k2 −m2 + iε

, (11)
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which follows from contour integration, (10) can be cast
in the form

tµν =
gµν m

2

4

∫
d4k

(2π)4
i

k2 −m2 + iε
, (12)

which implies

tλλ = m2
∫

d4k

(2π)4
i

k2 −m2 + iε
. (13)

We note that the integral in (12) and (13) is i∆F (0), the
Feynman propagator evaluated at x = 0.

An alternative derivation of (12) and (13) can be ob-
tained by using the starting (4) and (5) to evaluate the
trace tλλ:

tλλ =
1
2

∫
d3k

(2π)3
ω2
k − (k)2

ωk
=
m2

2

∫
d3k

(2π)3
1
ωk

. (14)

Combining (3), (11) and (14), we immediately recover (12)
and (13)! It is important to note that these expressions
are proportional to m2 and to the quadratically divergent
integral i∆F (0).

Returning to the issue of regularization, in the PV
framework (9) is replaced by the regularized expression

(tµν)PV =
N∑
i=0

Ci

∫
d4k

(2π)3
kµkν δ(k2 −M2

i ) θ(k0) , (15)

where M0 = m, C0 = 1, N is the number of regulator
fields, Mj (j = 1, 2, . . . , N) denote their masses, and the
Ci obey the constraints

N∑
i=0

Ci (M2
i )p = 0 (p = 0, 1, 2) . (16)

From (16) we see that in our case N = 3 is the minimum
number of regulator fields. It is worthwhile to note that if
the limitMj → ∞ is taken before the integration is carried
out, (15) reduces to the original, unregularized expression
of (9). In fact, limMj→∞ δ(k2 − M2

j ) = 0. Following the
steps leading from (9) to (12), (15) becomes

(tµν)PV =
gµν
4

N∑
i=0

Ci M
2
i

∫
d4k

(2π)4
i

k2 −M2
i + iε

, (17)

which is the PV regularized version of (12).
The simplest way to evaluate (17) is to differentiate

twice

I(M2
i ) ≡

∫
d4k

(2π)4
i

k2 −M2
i + iε

, (18)

with respect to M2
i , so that it becomes convergent. This

leads to I ′′(M2
i ) = 1/16π2M2

i . Integrating twice I ′′(M2
i )

with respect to M2
i , we obtain

I(M2
i ) =

1
16π2

[
M2
i (lnM2

i − 1) +K1M
2
i +K2

]
, (19)

where K1 and K2 are arbitrary constants of integration.
When inserted in (17), the terms involving K1, K2, and
−M2

i cancel on account of (16), and (17) becomes

(tµν)PV =
gµν
64π2

N∑
i=0

Ci M
4
i ln

(
M2
i

ν2

)
. (20)

Here ν is a mass scale that can be chosen arbitrarily since
its contribution vanishes on account of (16) with p = 2.

If we choose N = 3, the minimum number of regulator
fields, the constants Ci can be expressed in terms of the
Mi by solving (16) for p = 0, 1, 2 (see Appendix A). One
finds that (20) contains three classes of contributions:
(i) terms quartic in the regulator masses Mj (j = 1, 2, 3);
(ii) terms of O(m2) which are quadratic in Mj ;
(iii) terms of O(m4).

As shown in (20), all these contributions are accompa-
nied by logarithms. If one rescales the regulator masses by
a common factor Λ, one finds that, modulo logarithms, the
three classes become proportional to Λ4, Λ2, and Λ0, re-
spectively. Thus, the first class of terms exhibit the quartic
divergence frequently invoked in discussions of the cosmo-
logical constant problem. However, as shown in the ap-
pendix, the results show a curious and at first hand unex-
pected feature: for arbitrary values of Mj , the sign of the
quartic contribution to ρ is negative! Instead, the sign of
the O(m2Λ2) term is positive, and that of O(m4) contri-
bution is negative.

The PV expression greatly simplifies in the limitM3 →
M2 → M1 = Λ and becomes

(tµν)PV =
gµν

128π2

[
−Λ4 + 4m2Λ2 −m4

(
3 + 2 ln

Λ2

m2

)]
.

(21)
It is interesting to note that (17) also follows from the PV
regularization of the formal, quartically divergent tensor

Jµν = i
∫

d4k

(2π)4
kµkν

k2 −m2 + iε
. (22)

In fact

(Jµν)PV = i
N∑
i=0

Ci

∫
d4k

(2π)4
kµkν

k2 −M2
i + iε

,

which, upon the replacement kµkν → gµνk
2/4 and the de-

composition k2 = k2 − M2
i + M2

i , reduces to (17), since
the contribution of k2 −M2

i vanishes on account of (16).
Equation (22) may be also regulated by means of a Feyn-
man regulator which, for this application, we choose to be
of the form [(Λ2 −m2)/(Λ2 − k2 − iε)]3. Thus,

(Jµν)FR = i
∫

d4k

(2π)4
kµkν

k2 −m2 + iε
(Λ2 −m2)3

(Λ2 − k2 − iε)3
. (23)

Evaluating (23) we find the very curious result that it ex-
actly coincides with (21)! An advantage of (23) is that
one can discern immediately its sign by means of a Wick
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rotation of the k0 axis. Replacing kµkν → gµνk
2/4, per-

forming the rotation and introducing k0 = iK0, we obtain
the Euclidean representation

(Jµν)FR = −gµν
4

∫
d4K

(2π)4
K2

K2 +m2

(Λ2 −m2)3

(Λ2 +K2)3
, (24)

which shows that the cofactor of gµν is manifestly negative,
in conformity with (21).

In summary, according to (20) with the minimum num-
ber N = 3 of regulator fields, or its limit in (21), the lead-
ing contribution for a bosonic field would be ρ = −O(Λ4),
p = O(Λ4)! Such a result is theoretically unacceptable
since for a scalar field

〈0|T00|0〉 =
1
2
〈0|∂0ϕ∂0ϕ+ ∂iϕ∂iϕ+m2ϕ2|0〉

should be positive. We therefore interpret the sign problem
as an artifact of the regularization procedure that arises in
the case N = 3 due to the fact that some of the regulator
fields have negative metric.

The presence of quartic divergences, of either sign,
has another highly unsatisfactory consequence, namely it
breaks down the scale invariance of free field theories in
the massless limit! We recall that the divergence of the
dilatation current for a scalar field has the form

∂µD
µ = Tλλ +

�φ2

2
= Θλλ , (25)

where Θµν is the “improved” energy-momentum tensor
[11]. This leads to

〈0|∂µDµ|0〉 = tλλ = m2〈0|φ2|0〉 , (26)

where we used �〈0|φ2|0〉 = 0 and, in deriving the sec-
ond equality in (26), we employed the equation of motion.
Thus, for free fields, tλλ should vanish as m → 0, a prop-
erty that is violated by quartic divergences of either sign.

In order to circumvent the dual problems of sign and
breakdown of scale invariance of the free field theory in
the massless limit within the PV framework, there are
two possibilities: one is to subtract the offending O(Λ4)
term in (21); the other is to employ N ≥ 4, in which
case the Ci are not determined by the Mi, and the sign of
the O(Λ4) contributions is undefined. In the last approach
one can in principle impose the cancellation of the quartic
divergence as a symmetry requirement. However, the sign
of the leading O(m2Λ2) term remains undefined, which is
not an attractive state of affairs.

A simpler and more satisfactory approach is to go back
to (12) as a starting point to implement the regularization
procedure. Regularization of (12) in the PV framework
would lead us back to (17) and (21). Instead, we may
regularize the integral in (12) with a Feynman regulator,
which we choose to be of the form [Λ2/(Λ2 − k2 − iε)]2.
Neglecting terms of O(m2/Λ2), this leads to

(tµν)FR =
gµν
64π2

[
m2Λ2 −m4

(
ln
Λ2

m2 − 1
)]

, (27)

which implies

(tλλ)FR =
1

16π2

[
m2Λ2 −m4

(
ln
Λ2

m2 − 1
)]

. (28)

Equations (27) and (28) have the correct sign and conform
with scale invariance in the massless limit! A similar result
is obtained if a Wick rotation is implemented in (12), and
an invariant cutoff is employed to evaluate the integral.

We now turn to DR. Since the steps from (9) to (12)
involve only the k0 integration, in DR the regularized ex-
pressions of (9) and (12) are equivalent and we obtain

(tµν)DR =
gµν m

2 µ(4−n)

n

∫
dnk

(2π)n
i

k2 −m2 + iε
, (29)

which leads to

(tλλ)DR = m2 µ(4−n)
∫

dnk
(2π)n

i
k2 −m2 + iε

. (30)

We note that the n = 0 pole in (29) arises from the re-
placement kµkν → gµνk

2/n. Since gµνgµν = n, this pole
is absent in the evaluation of the trace in (30). In order to
use the rules of correspondence in an unambiguous man-
ner, we apply them to the Lorentz scalar tλλ evaluated in
the FR and DR frameworks. Carrying out the integration
in (30), we find

(tλλ)DR =
4 m4

(2
√

π)n
(µ/m)(4−n) Γ (3 − n/2)

(2 − n)(4 − n)
. (31)

This expression exhibits poles at n = 4 and n = 2 which,
according to the rules of correspondence for one-loop inte-
grals, indicate the presence of logarithmic and quadratic
divergences.

A heuristic way to establish a correspondence between
the cutoff calculation in (28) and the DR expression in (31),
is to carry out the expansion about n = 4 in the usual way,
but at the same time separate out the n = 2 pole in such a
manner that the overall result is only modified in O(n−4).
This leads to

(tλλ)DR =
µ2m2

2π

[
1

2 − n
+

1
2

]
(32)

− m4

16π2

[
2

4 − n
+ ln

µ2

m2 − 2C + 1
]

+ O(n− 4) ,

where C = [γ− ln 4π]/2. The contribution proportional to
m4 represents the usual result. The first term contains the
pole at n = 2, and only modifies the expansion in O(n−4).
A correspondence with (28) can be implemented by means
of the identifications[

1
4 − n

+ ln
µ

m
− C

]
n≈4

→ ln
Λ

m
− 1 , (33)

µ2

2π

[
1

2 − n
+

1
2

]
n≈2

→ Λ2

16π2 , (34)
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where, for instance, n ≈ 2 means that n is in the immediate
neighborhood of 2. It is interesting to note that if one
approaches the ultraviolet poles from below, as it seems
natural in DR, the signs of the left and right sides of (33)
and (34) coincide!

Another piece of interesting information contained in
the DR expression of (31) is that the O(m2Λ2) contribution
is not accompanied by a ln (Λ2/m2) cofactor. This can
be seen as follows: since (31) is proportional to (m2)n/2,
if we differentiate twice with respect to m2 we see that
the pole at n = 2 disappears. As a consequence, terms
of O(m2Λ2 ln (Λ2/m2)) cannot be present, since otherwise
contributions of O(Λ2) would survive under the double
differentiation. Indeed, this observation agrees with (28).
Thus, in one-loop calculations depending onm2, Λ2, terms
of O(m2Λ2 ln (Λ2/m2)) would require a double pole at n =
2 in the DR expression.

A conclusion essentially identical to (27), namely that
the divergence of the zero-point energy for free particles
is quadratic rather then quartic, and that massless par-
ticles do not contribute, has been recently advocated by
Akhmedov [5], invoking arguments of relativistic invari-
ance. The analysis of the present paper shows that this is
not enough to single out (27), since the PV regularization
leads to the covariant expressions of (20) and (21) that ex-
hibit a quartic divergence. What singles out (27) are the
combined requirements of relativistic covariance and scale
invariance of free field theories in the massless limit, as
well as consistency with the rules of correspondence.

We conclude this section by recalling that the contri-
butions of all bosons (fermions) carry the same (opposite)
sign as (27). Each contribution must be multiplied by a fac-
tor η that takes into account the color and helicity degrees
of freedom, as well as the particle–antiparticle content.

4 Evaluation of tλ
λ

based on Feynman diagrams

In Sect. 3 we have discussed the regularization of tµν and
its trace in the free field theory case, starting from the
familiar expressions for ρ and p given in (4) and (5). It is
instructive to revisit the evaluation of tλλ on the basis of
well-known expressions for the vacuum expectation value
of products of free field operators on the one hand, and
Feynman diagrams on the other. This will also pave the
way to the discussion of the effect of interactions in Sect. 5.

We will consider three examples: an hermitian scalar
field, a spinor field, and a vector boson, all endowed with
mass m. We recall the free field theory expressions for Tλλ
in the three cases:

Tλλ = −∂λϕ∂λϕ+ 2m2ϕ2 , (35)

Tλλ = −3ψ̄


i

↔
∂/
2

−m


ψ +mψ̄ψ , (36)

Tλλ = −m2AλA
λ . (37)

The above formulae are valid in four dimensions and, in
deriving (37), we have employed the symmetric version of
Tµν for the spin 1 field.

A direct way of evaluating tλλ is to consider the vacuum
expectation value of two fields at x and y, carry out the
differentiations exhibited in (35) and (36) and take the
limit x → y. For instance, in the free field scalar case we
have the well-known representation:

〈0|ϕ(x)ϕ(y)|0〉 =
∫

d4k

(2π)3
δ(k2 −m2) θ(k0) e−ik(x−y) .

(38)
The RHS of (38), the i∆+(x−y) function, is the contribu-
tion of the one-particle intermediate state in the Källen–
Lehmann representation which, of course, is the only one
that survives in the free field theory case. From (38) we
find

〈0| − ∂λϕ(x)∂λϕ(y) + 2m2ϕ(x)ϕ(y)|0〉 (39)

=
∫

d4k

(2π)3
δ(k2 −m2) θ(k0) (2m2 − k2) e−ik(x−y) ,

which is well defined. Taking the limit x → y and recalling
(35), we obtain the formal expression

(tλλ)ϕ =
∫

d4k

(2π)3
δ(k2 −m2) θ(k0) (2m2 − k2) . (40)

If instead of Tµν , the “improved” tensor Θµν [11] is em-
ployed for scalar fields, (35) is replaced by Θλλ = ϕ�ϕ+
2m2ϕ2, which again leads to (39) and (40). If we replace
k2 → m2 in these expressions on account of δ(k2−m2), we
recover (10), the result of our previous analysis in Sect. 3.
Parenthetically, we recall that, at the classical level, use of
the equations of motion leads to Θλλ = m2ϕ2 even in the
presence of the λϕ4 interaction [11].

Equation (40) admits another representation that can
be linked with a Feynman vacuum diagram, to wit

(tλλ)ϕ = Re
∫

d4k

(2π)4
i

[
2m2 − k2

]
k2 −m2 + iε

, (41)

where we have employed πδ(k2 −m2) = Re(i/k2 −m2 +iε)
and used the fact that the integrand is even in k0 to replace
θ(k0) → 1/2.

Equivalently, we have

(tλλ)ϕ = Re
{
m2

∫
d4k

(2π)4
i

k2 −m2 + iε
− i

∫
d4k

(2π)4

}
.

(42)
Equation (41) is depicted in Fig. 1, where the cross indi-
cates the insertion of the operator Tλλ given in (35). We
note that the “Re” instruction is important in the pas-
sage from (40) to (41) and ensures that the answer is real,
as required for diagonal matrix elements of the hermitian
operator Tλλ.

Using (36), the corresponding expression in the fermion
case is

(tλλ)ψ = −Re Tr
∫

d4k

(2π)4
i [m− 3(k/ −m)]

k/ −m+ iε
. (43)



170 G. Ossola, A. Sirlin: Contributions of fundamental particles to the vacuum energy density

�

Fig. 1. One-loop vacuum amplitudes. The cross indicates the
insertion of the trace Tλ

λ of the energy-momentum tensor.
The dashed line represents a scalar, spinor or massive vector
particle (see Sect. 4)

This can be cast in the form

(tλλ)ψ = (44)

− Re
{

4 m2
∫

d4k

(2π)4
i

k2 −m2 + iε
− 12 i

∫
d4k

(2π)4

}
,

where we have employed
∫

d4k k//(k2 −m2 + iε) = 0.
Finally, using (37), we have

(tλλ)A = Re
{

3m2
∫

d4k

(2π)4
i

k2 −m2 + iε
− i

∫
d4k

(2π)4

}
.

(45)
These expressions exhibit interesting features: the first

terms in (42), (44) and (45) are quadratically divergent
and real. The reality condition is easily checked by per-
forming the k0 contour integration or by means of a Wick
rotation of the k0 axis accompanied by the change of vari-
able k0 = iK0. This rotation is mathematically allowed
since the k0 integrations in those contributions are con-
vergent. The second terms in (42), (44) and (45) formally
exhibit a quartic divergence. However, since the integra-
tions are over the real axes, such terms are purely imagi-
nary in Minkowski space and therefore do not contribute
if the “Re” restriction is imposed. We note parenthetically
that, unlike in the previous case, the Wick rotation cannot
be applied to the unregularized

∫
d4k as it stands since,

in performing the k0 integration, the contributions of the
large quarter circles in the complex plane are not negli-
gible and, in fact, they are necessary to satisfy Cauchy’s
theorem.

In the PV and DR approaches the regularized versions
of the imaginary contributions in (42), (44) and (45) vanish
automatically. In contrast, a Feynman regulator of the
form [Λ2/(Λ2 − k2 − iε)]3 leads to

−i
∫

d4k

(2π)4

(
Λ2

Λ2 − k2 − iε

)3

=
Λ4

32π2 , (46)

which is real and positive and exhibits the frequently in-
voked quartic divergence. The reality property can also be
checked by performing a Wick rotation in (46), which is
now mathematically allowed. Thus, we see that the quar-
tically divergent contributions in the one-loop vacuum di-
agrams have a very ambivalent and disturbing property:
their contributions to ρ are imaginary in Minkowski space

and real, if regularized according to (46), in Euclidean
space.

However, if (46) is applied to regularize the imaginary
parts between curly brackets in (42), (44) and (45), se-
rious inconsistencies emerge. In fact, their coefficients do
not conform with the relations (tλλ)ψ = −4 (tλλ)ϕ and
(tλλ)A = 3 (tλλ)ϕ, which arise on account of the helic-
ity and particle–antiparticle degrees of freedom of Dirac
spinors and massive vector bosons in four dimensions.

A direct way to see that these terms are inconsistent
with (40) is to go back to that expression, replace k2 → m2

on account to the δ-function and then use δ(k2 − m2) =
(1/π)Re(i/k2 − m2 + iε). This leads to the first term of
(42), a result that is only consistent with (40) if the second
contribution vanishes.

We conclude that, in order to avoid inconsistencies, the
quartically divergent imaginary parts in (42), (44) and (45)
must be subtracted either by imposing the reality condi-
tion in Minkowski space or by means of the regularization
procedure, as in the DR and PV cases. The surviving terms
in (42), (44) and (45) are proportional tom2i∆F (0), satisfy
the relations (tλλ)ψ = −4 (tλλ)ϕ and (tλλ)A = 3 (tλλ)ϕ,
and coincide with the result in (40) and its equivalent ex-
pression in (10). Furthermore, they conform with the scale
invariance of free field theories in the massless limit.

The PV, DR, and FR regularizations and their corre-
spondence was discussed in detail in Sect. 3 in the case of
the free scalar field, starting with (12) and (13). In writing
down the rules of correspondence between DR and four-
dimensional cutoff calculations in the case of spin 1 and
spin 1/2 fields, there is a subtlety that should be pointed
out. In the case of the spin 1 field, the DR version of tλλ
is given by the expression for the scalar field (cf. (30))
multiplied by n−1, the number of helicity degrees of free-
dom in n dimensions. In separating out the contribution
of the n = 2 pole (cf. (32)), the residue carries then a
factor 1, rather than 3. In order to maintain the proper re-
lation with the four-dimensional calculation, in the spin 1
case the LHS of (34) corresponds to 3Λ2/16π2 rather than
Λ2/16π2, the factor 3 reflecting the number of helicity de-
grees of freedom in four dimensions. A similar rule holds
for spin 1/2 fields: if in evaluating the n = 2 residue one
employs Tr � = 2, as befits a spinor in two dimensions,
in the rule of correspondence with the four-dimensional
cutoff calculation one includes an additional factor 2 to
reflect the fact that Tr � = 4 for four-dimensional spinors.

The possible dichotomy in the treatment of the he-
licity degrees of freedom has had an interesting effect in
the derivation of sum rules based on the speculative as-
sumption that one-loop quadratic divergences cancel in the
standard model (SM). As explained in [10], in DR the con-
dition of cancellation of quadratic divergences in one-loop
tadpole diagrams is given by

Tr �
∑
f

m2
f = 3 m2

H + (2 m2
W +m2

Z)(n− 1) , (47)

where the f summation is over fermion masses and includes
the color degree of freedom. The factor n− 1 reflects once
more the helicity degrees of freedom of spin 1 bosons in
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Fig. 2. Two-loop vacuum amplitude in λφ4 theory (see Sect. 5)

n dimensions. Equation (47) leads also to the cancellation
of all quadratic divergences in the one-loop contributions
to the Higgs boson and fermion self-energies. Setting n =
Tr � = 4, and neglecting the contributions of the lighter
fermions one obtains the Veltman–Nambu sum rule [8,9]:

m2
H = 4 m2

t − 2 m2
W −m2

Z , (48)

On the other hand, it was pointed out in [10] that in
DR (47) with n = 4 is not sufficient to cancel the remain-
ing quadratic divergences in the W and Z self-energies.
Associating once more the one-loop quadratic divergences
with the n = 2 poles, the cancellation of the residues in all
cases (f ,H,W , Z) takes place when n = 2 is chosen. With
n = 2 and Tr � = 2 [12], this leads to the alternative sum
rule [10]

m2
H = 2 m2

t − (2 m2
W +m2

Z)
3

. (49)

Inserting the current values, mt = 174.3 GeV, mZ =
91.1875 GeV, and mW = 80.426 GeV [13], (48) and (49)
lead to the predictionsmH = 317 GeV, andmH = 232 GeV,
respectively. The current 95% CL upper bound from the
global fit to the SM is m95

H = 211 GeV [13], so that the
above values are somewhat larger than the range favored
by the electroweak analysis. It will be interesting to see
whether these predictions ultimately bear any relation to
reality!

5 Effect of interactions

An important issue is what happens when interactions
are taken into account. The investigation of their effect
on tλλ is an open and difficult one, since vacuum matrix
elements are factored out and then cancelled in the usual
treatment of quantum field theory. As it is well known, in
the conventional framework, interactions break the scale
invariance of free field theories in the massless limit, a
phenomenon referred to as the trace anomaly [14–16]. One
naturally expects that a similar phenomenon takes place
in vacuum amplitudes, an occurrence that would lead to
the emergence of quartic divergences. In this section we
limit our analysis to two instructive examples.

We first discuss the question in the scalar theory with
Lint = −(λ/4!)φ4. One readily finds that in O(λ) this
interaction contributes −(λ/8)∆2

F(0) to ρ, which is quar-
tically divergent. This result is obtained by either using
the familiar plane wave expansion involving annihilation
and creation operators and their commutation relations,

�

Fig. 3. Two-loop vacuum amplitude in QED. The cross rep-

resents the insertion of −(n− 1)ψ̄
(
i

↔
∂/ /2 −m

)
ψ (see Sect. 5)

�

Fig. 4. Two-loop vacuum amplitude in QED. The cross rep-
resents the insertion of (n− 1)eψ̄A/ψ (see Sect. 5)

or by the calculation of the relevant Feynman diagram,
which is a “figure 8” with the interaction at the intersec-
tion (see Fig. 2). We note that 1/8 = 3/4! is the symmetry
number for this diagram. However, the mass in (12) is the
unrenormalized mass m0, since this is the parameter that
appears in the Lagrangian. Writing m2

0 = m2 − Π(m2),
where Π is the self-energy, (12) generates a counterterm
−Π(m2)i∆F(0)/4. In O(λ) the only contribution toΠ(m2)
is the seagull diagram and equals (λ/2)i∆F(0), where 1/2 is
the symmetry number. Thus, the counterterm (λ/8)∆2

F(0)
exactly cancels the quartic divergence from the “figure
8” diagram! The same cancellation occurs when regulator
fields are present, since (17) involves just a linear combi-
nation of terms analogous to (12)!

Next we consider the example of QED in O(e2). Choos-
ing the symmetric and explicitly gauge invariant version
of Tµν , one finds in n dimensions:

Tλλ =
n− 4

4
Fµν F

µν−(n−1)ψ̄


i

↔
D/
2

−m0


ψ+m0 ψ̄ ψ ,

(50)
where Fµν = ∂µAν−∂νAµ,Dµ = ∂µ+ieAµ is the covariant
derivative and ψ andAµ are the electron and photon fields.

It is easy to see that the insertion of −(n− 1)ψ̄(i
↔
∂/ /2 −

m0)ψ in the electron loop, corrected by the interaction
in order e2 (Fig. 3), cancels against the contribution of
(n − 1)eψ̄A/ψ corrected in O(e) (see Fig. 4). This reflects
the validity of the equation of motion (iD/ −m0) ψ = 0.

Next, we focus on the insertion of [(n − 4)/4]FµνFµν
in the photon line (Fig. 5). The fermion-loop integral with
two external off-shell photons of momentum q is given by

−i8e2

(2
√

π)n
µ(4−n) Γ (2 − n/2) (gµνq2 − qµqν)
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�

Fig. 5. Two-loop vacuum amplitude in QED. The cross rep-
resents the insertion of [(n− 4)/4]FµνF

µν (see Sect. 5)

×
∫ 1

0
dx x (1 − x)

[
m2 − q2x(1 − x)

]n
2 −2

, (51)

where m is the fermion mass. Closing the photon line and
inserting the vertex [(n− 4)/4]FµνFµν multiplies (51) by

µ(4−n)
∫

dnq
(2π)n

n− 4
2

q2gµν
(−i
q2

)2

and we obtain for the diagram of Fig. 5

ADR =
4ie2

(2
√

π)n
(µ4−n)2(n− 4)(n− 1)Γ (2 − n/2) (52)

×
∫ 1

0
dx x (1 − x)

∫
dnq

(2π)n
[
m2 − q2x(1 − x)

]n
2 −2

.

We note that (1/q2)2, arising from the two photon propa-
gators in Fig. 5, has been cancelled by two q2 factors, one
from (51), the other from the [(n− 4)/4]FµνFµν vertex.

Performing a Wick rotation of the q0 axis, and intro-
ducing

q0 = iQ0 , q = Q , dnQ =
πn/2

Γ (n/2)
Q2(n−2

2 )dQ2 ,

u = Q2 ,

we have

ADR = −e2C(n)
∫ 1

0
dx [x(1 − x)]

n
2 −1

×
∫ ∞

0
du u

n
2 −1

[
u+

m2

x(1 − x)

]n
2 −2

, (53)

where

C(n) =
4

(4π)n
Γ (2 − n/2)
Γ (n/2)

(n− 4)(n− 1)(µ4−n)2 .

The u-integral in (53) equals

[Γ (n/2)Γ (2 − n)/Γ (2 − n/2)] m2n−4 [x(1 − x)]2−n
,

and (53) becomes

ADR = − 4 e2

(4π)n
(n− 4)(n− 1)(µ4−n)2 Γ (2 − n)m2n−4

×
∫ 1

0
dx [x(1 − x)]1−n/2

. (54)

The remaining integral equalsB(2−n/2, 2−n/2) = Γ 2(2−
n/2)/Γ (4 − n) and we find

ADR =
16 e2 m4 (µ/m)2(4−n)(n− 1) Γ 2(3 − n/2)

(4π)n(2 − n)(3 − n)(4 − n)
.

(55)
Equation (55) exhibits simple poles at n = 2, 3, 4. Accord-
ing to the rules of correspondence for two-loop diagrams,
this indicates the presence of quartic, quadratic, and log-
arithmic divergences.

For clarity, we point out that potentially there is a
counterterm diagram associated with Fig. 5, in which the
fermion loop is replaced by the insertion of the field renor-
malization vertex −iδZFµνFµν/4 in the closed photon
loop. However, such diagram, involving two vertices pro-
portional to FµνF

µν and two photon propagators, leads
to a result proportional to i

∫
dnq, which is imaginary in

Minkowski space and furthermore vanishes in DR. In par-
ticular, this also means that if the result for the fermion-
loop subintegration given in (51) were expanded about
n = 4, the pole contribution would cancel when the q inte-
gration is performed. Since we need the full dependence on
n to determine the possible pole positions and the pole con-
tribution from the fermion-loop subintegration vanishes, in
(55) we have evaluated the full two-loop integral, without
expanding the fermion-loop subintegration about n = 4.

There remains the contribution of m0ψ̄ψ, the last term
in (50), corrected by the interaction in order e2. The super-
ficial degree of divergence in four dimensions of the corre-
sponding two-loop diagram is trilinear, so that one expects
a quadratic divergence. Indeed, the DR calculation of the
diagram shows a pole at n = 3 and a double pole at n = 4
which, according to the rules of correspondence for two-
loop diagrams, indicate a quadratic divergence and log-
arithmic singularities proportional to O(m4 ln (Λ2/m2))
and O(m4 ln2 (Λ2/m2)).

6 Conclusions

In this paper we discuss a number of issues related to
the nature of the contributions of fundamental particles
to the vacuum energy density. This problem is of consid-
erable conceptual interest since what may be called the
physics of the vacuum is not addressed in the usual treat-
ment of quantum field theory. On the other hand, it also
represents a major unsolved problem since estimates of
these contributions show an enormous mismatch with the
observed cosmological constant.

As a preamble to our analysis, in Sect. 2 we use an el-
ementary argument to derive rules of correspondence be-
tween the poles’ positions in DR and ultraviolet cutoffs in
four-dimensional calculations. In the case of quadratic di-
vergences, they coincide with Veltman’s dictum [8], while
they are extended here to quartic singularities. A specific
example of this correspondence is given at the one-loop
level in Sect. 3.



G. Ossola, A. Sirlin: Contributions of fundamental particles to the vacuum energy density 173

In Sect. 3 we address the Lorentz-covariant regulariza-
tion of tµν in free- field theories, starting from the elemen-
tary expressions for ρ and p. Making use of a mathematical
identity, we are led to a covariant expression, which is im-
mediately confirmed by the direct evaluation of tλλ. The
regularization of this result is then implemented in the
PV, DR, and FR frameworks. In Sect. 4, we re-examine
tµν on the basis of the well-known expression for the vac-
uum expectation value of products of free fields, as well
as one-loop Feynman vacuum diagrams, with results that
are consistent with those of Sect. 3. In Sect. 5, we consider
two cases involving interactions: λφ4 theory in O(λ) and
QED in O(e2), which require the examination of two-loop
vacuum diagrams.

Our general conclusion, based on Lorentz covariance
and the scale invariance of free field theories in the mass-
less limit, as well as consistency with the rules of cor-
respondence applied to tλλ, is that quartically divergent
contributions to ρ are absent in the case of free fields.

At first hand, the notion that free photons do not con-
tribute to ρ may seem strange. However, we point out that
this immediately follows from (50), which tells us that for
free photons (Tλλ)γ = 0 in four dimensions. This implies
(tλλ)γ = 0 and, using (2) and (3), ργ = 0! In more pictorial
language: (Tλλ)γ = 0 implies ργ = 3pγ , the equation of
state of a photon gas but, in the vacuum case, (2) tells us
that ρvac = −pvac for any field. The only way of satisfying
the two constraints in the vacuum case is ρvac

γ = pvac
γ = 0.

As pointed out in Sect. 3, in the case of free fields the
same conclusion was recently advocated in the interest-
ing work of Akhmedov [5] on the basis of a less complete
line of argumentation, and without examining the effect
of interactions.

When interactions are turned on, as illustrated in the
QED case in Sect. 5, our conclusion is that quartic di-
vergences generally emerge. Thus, in some sense there is
a parallelism between the analysis of vacuum amplitudes
and conventional quantum field theory. Free-field theories
are scale invariant in the massless limit and, according to
our interpretation, this partial symmetry protects the the-
ory from the emergence of quartic divergences. However,
in the presence of interactions, the symmetry is broken
even in the massless limit and consequently such singular-
ities generally arise. On the other hand, it is worthwhile
to recall that Tλλ becomes a soft operator even in the
presence of interactions under the speculative assumption
that the coupling constants are zeros of the relevant β-
functions [15,16].

From the point of view of formal renormalization the-
ory, the presence of the highly divergent expressions en-
countered in the study of vacuum amplitudes does not
present an insurmountable difficulty. For instance, in the
PV approach discussed in Sect. 3 with a sufficiently large
number of regulator fields, the coefficients of the free field
divergences are undefined and in principle can be chosen
to cancel the corresponding singularities emerging from
interactions. More generally, the λ constant that appears
in Einstein’s equation can be adjusted to cancel such sin-
gularities. As emphasized by several authors [1] the crisis

resides in the extraordinarily unnatural fine-tuning that
these cancellations entail.

From a practical point of view, the conclusions in the
present paper hardly affect the cosmological constant prob-
lem: clearly, it makes very little difference phenomenolog-
ically whether the mismatch is 123 or 120 orders of mag-
nitude! On the other hand, they place the origin of the
problem on a different conceptual basis.

The simplest framework in which quartic divergences
cancel remains supersymmetry since it implies an equal
number of fermionic and bosonic degrees of freedom. In
some effective supergravity theories derived from four-
dimensional superstrings, with broken supersymmetry, it
is possible to ensure also the cancellation of the O(m2Λ2)
terms in the one-loop effective potential [17]. In such sce-
narios, the O(m4) terms become O(m4

3/2), wherem3/2, the
gravitino mass, is associated with the scale of supersym-
metry breaking. Assuming m3/2 = O(1 TeV) this leads to
the rough estimate ρ = O(TeV4) mentioned in the Intro-
duction.
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Appendix A

In this appendix we analyze (20), which is the PV-reg-
ularized version of (12). Choosing the minimum number
N = 3 of regulator fields, the constants Cj (j = 1, 2, 3) can
be expressed in terms of the m2 and the M2

j (j = 1, 2, 3)
by solving (16) for p = 0, 1, 2. This leads to

C1 =
−M2

2M
2
3 +m2(M2

2 +M2
3 ) −m4

(M2
2 −M2

1 )(M2
3 −M2

1 )
. (A1)

C2 is obtained from C1 by applying the cyclic permutation
(1 2 3), while C3 is obtained from C2 by means of the
same permutation. Focusing on the quartic divergences,
we neglect the terms proportional to m2 and m4 and,since
ν2 in (20) is arbitrary, we choose ν2 = M2

3 . Then the
quartically divergent terms in (20) can be cast in the form

(tµν)PV(m2 = 0)

=
gµν
64π2

M2
1M

2
2M

2
3

M2
2 −M2

1

[
f

(
M2

3

M2
1

)
− f

(
M2

3

M2
2

)]
, (A2)

where

f(x) =
lnx
x− 1

. (A3)
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We note that f(x) is positive definite for all x ≥ 0 while
its derivative

f ′(x) =
1

x− 1

[
1
x

− lnx
x− 1

]
(A4)

is negative definite. Thus, f(x) is a positive definite and
decreasing function of its argument. Consider now the case
M2

2 > M2
1 . Then M2

3 /M
2
1 > M2

3 /M
2
2 and the expression

between square brackets is negative. Since (M2
2 −M2

1 ) > 0,
we conclude that the coefficient of gµν in (A2) is negative
for any value of M2

3 . If M2
1 > M2

2 , M2
3 /M

2
1 < M2

3 /M
2
2 ,

the square bracket is positive but (M2
2 −M2

1 ) < 0, so that
we reach the same conclusion. Thus, for all possible values
of the regulator masses M2

j , the coefficient of gµν in (20)
is negative definite which, as explained in Sect. 3, is phys-
ically unacceptable. Analogous arguments show that for
all M2

j , the contributions of O(m2M2
j ) and O(m4) in the

cofactor of gµν are positive and negative definite, respec-
tively. In the limit M3 → M2 → M1 = Λ, (A2) greatly
simplifies and reduces to the first term in (21).

As mentioned in Sect. 3, one possible solution of the
sign problem is to subtract the offending O(M4) contribu-
tions. Another possibility is to consider N ≥ 4 regulator
fields. In that case (16) for p = 0, 1, 2 are not sufficient to
determine the Cj (j = 1, . . . , N) in terms of the masses.
As expected, we have checked that the coefficient of the
O(M4) term in (20) becomes undetermined while still sat-
isfying the three relations of (16), so that it may be chosen
to be positive or, for that matter, zero. The last possibility
would naturally follow by invoking the scale invariance of
free field theories in the massless limit and would conform
with the analysis based on DR. As mentioned in Sect. 3,
in the N ≥ 4 solution of the problem, the coefficient of the
leading O(m2Λ2) is also undefined, which is not a satis-
factory state of affairs!

Appendix B

In this appendix we apply DR and the rules of correspon-
dence to integrals that occur in the evaluation of the one-
loop effective potential in the λφ4 theory [18]:

V (φc) = − i µ4−n

2

∫
dnk

(2π)n
ln

(
k2 −m2 − 1

2λφ
2
c + iε

k2 −m2 + iε

)
.

(B1)
We recall that in the path integral formalism, the denom-
inator in the argument of the logarithm arises from the
normalization of the generating functional W [J ], namely
W [0] = 1.

We consider the integral

K = − i µ4−n

2

∫
dnk

(2π)n
ln (k2 − c+ iε) , (B2)

which can be obtained from

L = − i µ4−n

2

∫
dnk

(2π)n
(k2 − c+ iε)α (B3)

by differentiating with respect to α and setting α = 0. The
last integral is given by

L =
µ4−n

2(2
√

π)n
(−1)α c

n
2 +α Γ

(−α− n
2

)
Γ (−α)

. (B4)

Since 1/Γ (0) = 0, the only non-vanishing contribution to
K involves the differentiation of Γ (−α). Thus

K = − µ4−n

2(2
√

π)n
c

n
2 Γ

(
−n

2

)
(B5)

where we have employed limα→0 ψ(−α)/Γ (−α) = −1. We
see that K contains poles at n = 0, 2, 4 which, according
to the rules of correspondence, indicate quartic, quadratic
and logarithmic ultraviolet singularities. However, (B1)
involves the difference of two integrals of the K type and
we find

V (φc) = (B6)

− µ4−n

2(2
√

π)n

[(
m2 +

λφ2
c

2

)n/2
− (m2)n/2

]
Γ

(
−n

2

)
.

Clearly, the residue of the n = 0 pole cancels in (B6) and
the leading singularity is given by the n = 2 pole:

V (φc) =
µ2

8π
λ φ2

c

(2 − n)
+ · · · , (B7)

which corresponds to a quadratic divergence. This con-
forms with the result for the leading singularity obtained
by expanding (B1) in powers of λφ2

c . Moreover, if one ap-
proaches the pole from below, as discussed after (34), the
signs also coincide! As it is well known, the quadratic and
logarithmic singularities in (B6) are cancelled by the δm2

and δλ counterterms [18].
The K-integral with c = m2 is also interesting because

in some formulations it is directly linked to the vacuum
energy density contribution from free scalar fields [19]. In
order to obtain a four-dimensional representation of (B2),
we introduce a Feynman regulator [Λ2/(Λ2 −k2 − iε)]3 and
perform a Wick rotation, which leads to the Euclidean-
space expression

K =
1

32π2

∫ ∞

0
du u ln

(
u+m2

σ2

) (
Λ2

Λ2 + u

)3

. (B8)

In order to give mathematical meaning to the logarithm,
in (B8) we have introduced a squared-mass scale σ2 which,
for the moment, is unspecified. Evaluating (B8), we have

K =
1

64π2

{
Λ4

[
ln

(
Λ2

σ2

)
+ 1

]
+m2Λ2

−m4
[
ln

(
Λ2

m2

)
− 1

]}
, (B9)

where we have neglected terms of O(m2/Λ2). In a free field
theory calculation, one expects the answer to depend on
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m2 and Λ2, as we found, for instance, in (21) and (27).
By arguments analogous to those explained at the end of
Sect. 3, one finds that σ2 cannot be identified with m2. In
fact, with c = m2, (B5) is proportional to (m2)n/2. Differ-
entiating with respect to m2, the n = 0 pole in (B5) can-
cels. This implies that terms of O(Λ4 ln (Λ2/m2)) cannot
be present, since otherwise contributions of O(Λ4) would
survive the differentiation with respect to m2. An attrac-
tive idea to fix σ2 is to invoke symmetry considerations. In
particular, since according to the arguments of this paper
the terms of O(Λ4) violate the scale invariance of free field
theories in the massless limit, we may choose σ =

√
e Λ to

eliminate such contributions. In that case, (B9) reduces to
our previous result in (27), obtained by more elementary
and transparent means! Correspondingly, in the DR ver-
sion of K, the n = 0 pole µ4(4 − n)/4n may be removed
in order to conform with the scale invariance of free field
theories in the massless limit. This can be achieved by ap-
pending an n/4 normalization factor to the RHS of (B5),
in which case the rules of correspondence between the DR
and four-dimensional calculations reduce precisely to (34)
and (34).

In summary, aside from the fact that the derivation of
(12) and the calculation of (27) are particularly simple,
they offer the additional advantage that they explicitly
exhibit the partial scale invariance of free field theories.
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